THE LINEARITY OF PROPER HOLOMORPHIC MAPS BETWEEN BALLS IN THE LOW CODIMENSION CASE

JAMES J. FARAN

Let $B^n = \{z \in C^n: ||z|| < 1\}$ and let $f: B^n \to B^k$ be a proper holomorphic map. We shall always take n > 2. Cima and Suffridge [1] have conjectured that if f extends to a twice continuously differentiable function on the closure of B^n and $k \le 2n - 2$, then f is linear fractional. The purpose of this note is to show

Theorem. If $f: B^n \to B^k$ is a proper holomorphic map which extends holomorphically to a neighborhood of $\overline{B^n}$ and $k \leq 2n-2$, then f is linear fractional.

(It should be remarked that the map $(z_1, \dots, z_n) \to (z_1, \dots, z_{n-1}, z_1 z_n, \dots, z_{n-1} z_n, z_n^2)$ shows that the theorem is false if $k \ge 2n-1$; see [1].)

So, let $f: B^n \to B^k$ be a proper map, holomorphic in a neighborhood of $\overline{B^n}$, $k \le 2n-2$. Let $\langle z,w \rangle = \sum_{j=1}^p z_j \overline{w_j}$ be the hermitian inner product in C^p . Let z' = f(z). Applying the Hopf lemma to the function $r' = \langle z', z' \rangle - 1$ on B^n , we see that

(1)
$$\langle z', z' \rangle - 1 = u(z, \bar{z})(1 - \langle z, z \rangle)$$

for some real analytic function $u(z, \bar{z})$, nonzero in a neighborhood of ∂B^n . Complexifying, (1) becomes

(2)
$$\langle z', w' \rangle - 1 = u(z, \overline{w})(1 - \langle z, w \rangle),$$

where w' = f(w).

Let $z_0 \in \partial B^n$. (2) is valid for $(z, w) \in U \times U$ for some open neighborhood U of z_0 . Thus if z is a point on the hyperplane $Q_w = \{\zeta \colon 1 - \langle \zeta, w \rangle = 0\}$, $(z, w) \in U \times U$, then z' = f(z) is on the hyperplane $Q'_{w_0} = \{\zeta' \colon 1 - \langle \zeta', w' \rangle = 0\}$, w' = f(w). Thus f maps points lying in a complex hyperplane to points lying in a complex hyperplane. Let $\phi_n \colon P^n \to P^{n^*}$ be the antiholomorphic map

Received April 16, 1984 and, in revised form, April 10, 1985.

sending a point w to its reflection Q_w . (P^{n^*} = the projective space of hyperplanes in P^n .) ϕ_n is an antiholomorphic isomorphism, so we may define a map f^* by the commutative diagram

$$U \xrightarrow{f} P^{k}$$

$$\downarrow^{\phi_{n}} \downarrow^{\phi_{k}}$$

$$\downarrow^{\phi_{k}} P^{k*}$$

i.e., $f^*(Q_w) = Q_{w'}$. The point of the remarks above is that if $Q_w \cap U \neq \emptyset$, then $f(Q_w \cap U) \subset Q_{w'} = f^*(Q_w)$. (Note that $z_0 \in Q_{z_0}$ so $\{w \in U: Q_w \cap U \neq \emptyset\}$ is open and nonempty.)

In the sequel we shall let P' stand for an r-dimensional linear subspace of projective space, constant, variable, arbitrary, etc., depending on context. For convenience we write f(P') for $f(P' \cap U)$.

Let $G(1,U) = \{P^1 \subset P^n: P^1 \cap U \neq \emptyset \text{ and } P^1 \subset Q_w, \text{ some } w \in U\}$. For $P^1 \in G(1,U)$ define $d(P^1)$ = the dimension of the smallest linear subspace containing $f(P^1)$ and define $d = \max_{P^1 \subset G(1,U)} \{d(P^1)\}$. Note that $d(P^1)$ is the rank of the $k \times \infty$ matrix whose columns are derivatives of f along P^1 . Thus $\{P^1: d(P^1) < d\}$ is given by the vanishing of a collection of $d \times d$ determinants, hence is a proper subvariety of G(1,U). We now have a number of cases to look at.

Case 0: d = 0. Then f is constant, hence improper.

Case 1: d = 1. Then the image of f is contained in the P^n spanned by the image of Df, and since f takes lines to lines, f is linear fractional.

Case 2: d > 2. Let P^{n-2^*} be the (n-2)-dimensional space of hyperplanes in P^n containing $P^1 \in G(1-U)$ and P^{k-d-1^*} the (k-d-1)-dimensional space of hyperplanes in P^k containing P^d (= span of $f(P^1)$). If $P^{n-1} \supset P^1$, then the span of $f(P^{n-1}) \supset P^d$ so if also $P^{n-1} \in \phi_n(U)$, then $f^*(P^{n-1}) \in P^{k-d-1^*}$, i.e., f^* maps P^{n-2^*} 's (the set of hyperplanes containing a line) into P^{k-d-1^*} 's. Since f and f^* are conjugate isomorphic, f maps P^{n-2} 's into P^{k-d-1} 's. (The exceptions would be those P^{n-2^*} 's corresponding to P^1 's with $d(P^1) < d$. This is an analytic subvariety. Since the dimension of the smallest linear subspace containing $f(P^{n-2})$ drops on subvarieties, every $f(P^{n-2})$ is contained in some P^{k-d-1} .)

Lemma. f maps P^{n-1} 's into P^{k-d} 's.

Proof. Pick a P^{n-1} near Q_{z_0} and an $x \in P^{n-1}$ such that Df(x) has maximal rank. (There exist such (P^{n-1}, x) since f is proper. Indeed, the P^{n-1} 's for which we cannot do this form a subvariety. If $f(P^{n-1}) \subset P^{k-d}$ for all P^{n-1} 's off that subvariety, $f(P^{n-1}) \subset P^{k-d}$ since dimension can only drop

along subvarieties). Suppose $f(P^{n-1})$ spans at least a P^{k-d+1} . Then there exist multi-indices $\alpha_1, \dots, \alpha_{k-n-d+2}$ and directions $v_1, \dots, v_{k-n-d+2}$ tangent to P^{n-1} so that the P^{k-d+1} is spanned by f(x), the image of Df(x) (restricted to P^{n-1}) and $\{D^{\alpha_j}f(x)(v_j^{|\alpha_j|})\}$. Note k-n-d+2 < n-d < n-2. So consider the P^{n-2} through x spanned by $x, v_1, \dots, v_{k-n-d+2}$ (and enough other tangent directions w_p to make up a P^{n-2}). Then $Df(x)(v_j)$, $Df(x)(w_p)$ and $D^jf(x)(v_j^j)$ are contained in the span of $f(P^{n-2})$. Thus $f(P^{n-2})$ spans at least an n-2+k-n-d+2=k-d dimensional space, but $f(P^{n-2}) \subset P^{k-d-1}$. This contradiction proves $f(P^{n-1}) \subset P^{k-d}$ for P^{n-1} in an open set about Q_{z_0} . The lemma for all P^{n-1} follows by analytic continuation.

Let $f_1 = f|_{P^{n-1}}$. $f_1: P^{n-1} \to P^{k-d}$. Suppose $P^{n-1} \cap B^n \neq \emptyset$. Then $P^{n-1} \cap B^n$ will then be a B^{n-1} , $P^{k-d} \cap B^k$ will be a B^{k-d} and $f_1: B^{n-1} \to B^{k-d}$ will be proper. Note that the codimension has dropped by $d-1 \geqslant 1$. We can now proceed by induction.

Codimension 0. k = n, $f: P^n \to P^n$ taking hyperplanes into hyperplanes. The fundamental theorem of projective geometry then yields that f is linear fractional. (Or, $f: B^n \to B^n$ is proper, hence must be an automorphism.)

Codimension > 0. Assume the theorem is true for codimension less than k - n. Then if d = 1 we are done. If $d \ge 2$, the maps f_1 constructed above are linear by the induction hypothesis, hence f is linear fractional along every hyperplane intersecting B^n . It follows that f must be linear fractional.

References

[1] J. A. Cima & T. J. Suffridge, A reflection principle with applications to proper holomorphic mappings, preprint.

THE JOHNS HOPKINS UNIVERSITY